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Shark attacks have historically been studied from a viewpoint of encounter
number per region and so limited to the areas in which the attacks
occurred. In this exploratory modeling study, the goal was to examine
whether an area-specific cluster analysis algorithm undertaken with a
modern cluster analysis tool (SaTScanTM 9.1.0) could enhance our spatial
and spatio-temporal understanding of attack patterns. The data used were
from Florida’s east coast between 1994 and 2009. The program suggests
several high- and low-risk areas for shark attacks. The results are discussed
from a quantitative rather than qualitative perspective.
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Introduction

Since the time humans started to enter the sea for recreational or professional
purposes, the fear of attack by a shark has preyed upon their minds (Ritter et al.
2008). So it is not surprising that early scholars around the world started to collect
attack information to understand the nature of attacks better (Burton 1935;
Coppleson 1951; Davis 1963) and to look for potential repellents (Fogelberg 1944;
Gilbert and Springer 1963; Tester 1963). From the beginning, it was evident that
shark attacks are primarily recorded where environmental circumstances are most
favorable for people to swim (Coppleson 1951; Baldridge 1959; Gilbert et al. 1959).
Because of this, attack prone regions and commonly involved species became the
foundation for attack statistics around the world (Caldicott et al. 2001; Woolgar
et al. 2001). One of the shortcomings of analyzing shark attacks is that data are
loosely descriptive and not consistent. Among other pieces of information, they
record where an attack occurred, species involved (Ritter and Levine 2004; Ihama
et al. 2009), the size (Ritter and Levine 2005; Lowry et al. 2009; West 2011), what
appeared to cause the attack (Tricas and McCosker 1984; Ritter 2004), and whether
the presence of the sharks was seasonal or a year-round occurrence (Davis 1963;
Levine 1996; Hazin et al. 2008; West 2011).

The aim of this investigation was to test whether spatial and spatio-temporal
cluster analysis could add to our understanding of attack patterns. To do this, we
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postulated two hypotheses: (1) that shark attacks are proportionate to human beach

activities and (2) that no space–time interaction for shark attacks exists with respect
to area and time. The most suitable program to test such hypotheses is the spatial
scan statistic program SaTScanTM, developed by Martin Kulldorf (Kulldorff 2001;

Kulldorff et al. 2006; Kulldorff et al. 2009), which has already been applied in a
variety of fields including environmental studies (Sudakin et al. 2002; Vadrevu 2008),

botanical and forestry research (Coulston and Riitters 2003; Bayon et al. 2007; Tuia
et al. 2008), and cancer investigations (Fang et al. 2004; Sheehan and DeChello 2005;

Amin et al. 2010).

Methods

Data sources

Because of incomplete beach population data for the Florida east coast counties
prior to 1994, the study was limited to 16 years from 1994 to 2009. Since shark

attacks are proportional to the number of people visiting and entering the ocean, we
used shark attack rate rather than shark attack count for this study. A shark attack

rate was defined as the ratio of annual reported shark attacks in a given region to the
annual estimated beach attendance for a given region. The ideal population to use

would be the annual number of people who enter the water at the given location, but
such data do not exist. The closest available population data come from the United
States Lifesaving Association (USLA), a non-profit professional association of

beach lifeguards. The USLA keeps intermittent annual attendance data for the
beaches at which its lifeguards are present. Even though the population data from

the USLA are a strict beach attendance, meaning an annual count of people going
to the beach, the data served as a sufficient population proxy given the assumption

that the same proportion of people attending a beach will enter the water for all
beaches. While serving as a good proxy for the required populations entering the
water, it contained two deficiencies that required correction: some population data

were not specific enough with respect to location, or were completely absent for some
locations. To make the analysis more spatially specific, large counties, such as

Volusia and Palm Beach County, were broken up into smaller units that increased
the number of locations from 12 counties to 25 coastal regions. Since beach

populations in the smaller units were not likely to be the same for every unit, we
weighed the population with respect to the coastal populations. For counties with
large sections of population data missing, adjacent beaches, with known popula-

tions, were used to approximate the population. Upon acquisition of shark attack
and population data, each attack was classified and assigned to a specific unit within

a county (Figure 1). The shark attack data for the study were made available from
the Global Shark Attack File (GSAF) of the Shark Research Institute. An attack

was defined as any shark–human interaction where the lowest level of contact was a
hit or brush that could not be classified as accidental. No difference was made for the
severity of an incident. An incident was excluded if the person provoked the shark,

e.g., fishing for sharks. During the chosen time period 345 shark attack reports were
filed, of which 210 and 114 incidents were categorized as surfing and non-surfing

shark attacks (swimming, bathing), respectively. Twenty-one filed incidents with the
GSAF did not fit the chosen criteria and were excluded.
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Figure 1. Division of the eastern Florida shore into 25 coastal regions for the purpose of the
analysis.
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Data analysis

The software SaTScanTM version 9.1.0, which uses the scan statistic to identify and
test for the significance of clusters, was applied to evaluate the shark attack data for
the east coast of Florida. The counts of shark attacks in each coastal region were
used in two ways, a spatial analysis in two dimensions and a three-dimensional
setting for a space–time analysis with the additional dimension of time. The
clustering algorithm deals with the relation of two spatial and one temporal
dimensions by evaluating all combinations of spatial sizes and temporal lengths, such
as, e.g., a ‘‘pizza shape’’ (large spatial area, short time interval), a ‘‘pencil’’ (small
geographical area, long time interval), a ‘‘dot’’ (small spatial area and short time
interval), and a ‘‘barrel’’ (large geographical area and long time interval), as well as
everything in between. The multiple testing inherent in the many options evaluated is
adjusted. It was assumed that the incidence of a shark attack in each coastal region
was distributed according to a Poisson distribution. This method tested the null
hypothesis that the shark attack risk was the same for all coastal regions. Shark
attacks were separated by being either surfing or non-surfing attacks. For
SaTScanTM’s model to work, each coastal region needed to be defined through a
centroid. ArcGIS was used to calculate the geographical centroid of each coastal
region. SaTScanTM’s spatial scan statistics creates a ‘‘spatio-temporal window’’ that
moves spatially over a map, and includes a variety of sets of adjacent regions
represented by their corresponding centroids. If a centroid of a specific coastal region
is included in the moving window, then this region is added to the window, as well.
The center of the window was only positioned at the 25 coastal region centroids. The
radius of the window for each grid point varied continuously in size between zero
and a specific upper limit. This allowed the window to be flexible for both its location
and size. A large number of distinct geographical circles were then created with
different sets of close data locations within the circles, where each circle represented a
possible shark attack cluster for the data. We used the coordinates to be sure that
each data location was a potential cluster in itself. For each window, the spatial scan
statistic tested the null hypothesis of equal risk of a shark attack for all coastal
regions against the alternative hypothesis that there exists an elevated shark attack
risk or a high risk within the scan window, as compared with areas outside the
window. SaTScanTM also allowed the option of testing against the alternative
hypothesis that there exists a depressed shark attack risk or a low risk. The likelihood
function for the Poisson model can be shown to be proportional to

n

E

� �n N� n

N� E

� �N�n

I n4Eð Þ

where n is the number of shark attack incidents within the scan window, N the total
number of incidents in Florida, and E the expected number of shark attack incidents
under the null hypothesis. Since a one-tailed test was used that rejected the null
hypothesis if there existed an elevated shark attack risk, an indicator function I was
applied such that I¼ 1 when the scan window had a larger number of shark attack
incidents than expected if the null hypothesis were true, and zero otherwise. It can be
shown that for given values of N and E, the likelihood increases as the number of
shark attack incidents n increases in the scan window. SaTScanTM generated 999
random replications of the data set by a Monte Carlo simulation in order to obtain
the p-value for the likelihood ratio for the identified shark attack clusters.
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The identified shark attack clusters were listed by SaTScanTM in order of the value of
the likelihood ratio test statistic. A cluster was considered a ‘‘significant cluster’’
when the p-value for each cluster was smaller than the set significance level. In this
study, a significance level of 0.05 was set. SaTScanTM uses a likelihood ratio test to
identify the cluster with the highest probability of existing. This cluster is called ‘‘the
most likely cluster.’’ All other clusters are arranged in order according to the values
of the likelihood ratio test. These clusters are called ‘‘secondary clusters.’’ We
decided not to include any clusters that were not significant at the significance level
0.05. It was possible to use circular or elliptical windows for the purpose of
identifying circular shark attack clusters and elliptically shaped clusters, respectively.
In this study, we used circular windows to identify clusters. The spatial scan statistic
chosen for this study requires specification of the underlying distribution of the data
used in SaTScanTM, making it a parametric statistical method. To ensure adequate
statistical power, all shark attack incidents for the period between 1994 and 2009
were used to perform a purely spatial analysis. The space–time analysis is a temporal
extension of the spatial analysis, where the algorithm searched within the period
from 1994 to 2009 for time periods in which shark attack clusters appear. For
convenience, high and low shark attack risks were further labeled ‘‘high risk’’ and
‘‘low risk’’, respectively.

Results

Analysis of shark attack rates

All shark attacks analyzed were initially combined without dividing them into
activity-related subcategories. Spatial analysis revealed two high-risk areas along the
eastern Florida coast, regions [9–13] and [18], respectively, and two significant low-
risk clusters for the regions [2–6] and [20–25], respectively (Figure 2). Table 1
presents the number of true and expected attacks, percentage of risk increase and
decrease, relative risk, as well as the attack rates, and the probabilities that the
respective clusters were due to random causes. Since the purely spatial analysis for
the period 1994–2009 did not indicate when the shark attack cluster appeared, a
space–time analysis was performed. Assessing these clusters using the Poisson model
within SaTScanTM showed few differences (Figure 3). Regions [9–13] reappeared as
the most likely temporal cluster with elevated risk for the time period between 2001
and 2008, whereas the secondary high cluster spread around region [18], from [14] to
[19], between 1998 and 2008 (Table 2). Similarly, regions [2–7] and [20–25] appeared
between 1994 and 2001, and 2008 and 2009, as primary and secondary low-risk
areas, respectively. To verify whether the high-risk clusters shifted over time, the
study period was partitioned into two periods, 1994–2000 and 2001–2009. During
1994–2000, the most likely cluster spread between regions [7] and [17] with 111 shark
attacks, a relative rate (RR) of 16.14, and a p-value of 0.001, whereas for the second
time period between 2001 and 2009, the most likely cluster consisted of the regions
[9–18], with 172 attacks, RR¼ 12, and a p-value of 0.001.

Determination of surfing and non-surfing attack rates

Based on the available information, the total shark attack numbers were partitioned
into surfing attacks and non-surfing attacks. A purely spatial analysis for the high
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Figure 2. Spatial analysis of low and high primary and secondary attack clusters between
1994 and 2009.

Table 1. Spatial data for the high- and low-risk cluster areas in Florida between 1994 and
2009 for all attacks.

Area Rrel Ntrue RR Nexp Ratt p

[9–13] Primary high 213 9.38 50.64 2/1,000,000 0.0001
[18] Secondary high 16 4.01 4.13 2/1,000,000 0.0003
[20–25] Primary low 17 0.053 169.85 0.05/1,000,000 0.0001
[2–6] Secondary low 19 0.40 43.5 0.002/1,000,000 0.0008

Notes: Rrel, relative risk; Ntrue, true number of attacks; RR, relative risk; Nexp, expected
number of attacks; Ratt, attack rate; Prand, probability that cluster is due to random causes
(Monte Carlo rank); and p, p-value of log likelihood ratio test.

190 R. Amin et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

es
t F

lo
ri

da
],

 [
Pr

of
es

so
r 

R
ai

d 
A

m
in

] 
at

 0
8:

17
 2

6 
Ju

ne
 2

01
3 



Figure 3. Space–time analysis of low and high primary and secondary attack clusters between
1994 and 2009.

Table 2. Time spatial data for the high- and low-risk cluster areas in Florida between 1994
and 2009 for all attacks.

Area Rrel Ntrue RR Nexp Period p

[9–13] Primary high 137 7.79 26.91 2001–2008 0.0001
[14–19] Secondary high 29 3.25 9.48 1998–2003 0.0009
[20–25] Primary low 8 0.005 92.55 1994–2001 0.0001
[2–7] Secondary low 0 0 9.59 2008–2009 0.0162

Notes: Rrel, relative risk; Ntrue, true number of attacks; RR, relative Risk; Nexp, expected
number of attacks; Period, years during which cluster remained; and p, p-value of log
likelihood ratio test.
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and low surfing and non-surfing attack rates, respectively, is given in Table 3. By

adding the time factor, the space–time analysis for surfing attacks showed the years

between 2001 and 2008 as the time period for the high-risk cluster (Figure 4),

whereas the low-risk areas appeared between 1994 and 2001, with a second low-risk

cluster between 2002 and 2008 (Table 4). Similarly, the space–time analysis for the

non-surfing high attack rates fell between 2000 and 2007 as the period for the high-

risk cluster, with a corresponding low-risk period between 1995 and 2000 (Figure 5).

The chi-squared test for independence between type of attack (surfing and non-

surfing) and type of region (high and low attack rates) was significant (p¼ 0.0006). A

significant association exists between type of attack and type of region. The coastal

areas falling into the high attack rate cluster have a proportion of surfer attacks of

46% while this percentage is only 21% in the low attack rate cluster.

Discussion

This project focused on the quantitative analysis of shark attack data from a spatial

and spatio-temporal point of view using cluster analysis. Based on the results, the

two hypotheses that shark attacks are proportionate to beach attendance, and that

there exists no space–time interaction of shark attacks over time and area on the

Florida east coast can be rejected. If the shark attack rates are identical in all coastal

regions in Florida, then we would expect to find the number of shark attacks in each

coastal region to be proportional to the number of people attending the beaches in

the corresponding coastal region. However, the data analysis showed several areas

along the east coast with either a significant increase of attack rates, or areas with

significantly lower rates than expected. A significant space–time cluster signifies that

the rate of shark attacks are not just ‘‘purely spatial’’ or just ‘‘purely temporal.’’

Instead, specific years exist during which shark attack rates increased (or decreased,

when scanning for low shark attack rates). Such information could be useful in

future studies in which it is desired to identify causal factors that may have led to the

change in shark attack rates in certain years. Historically, the most prominent area

for shark attacks in Florida is within Volusia County. It has commonly been labeled

as the ‘‘shark attack capitol of the world,’’ and understandably so when considering

attack numbers alone (Burgess et al. 2010; Shark Research Institute 2010). However,

Table 3. High- and low-risk cluster areas for surfing and non-surfing attacks in Florida.

Area Activity Rrel Ntrue RR Nexp Popest p

[9–13] Surfing Primary high 158 15.8 35.67 6,983,401 0.001
[18] Surfing Secondary high 11 4.56 2.52 492,773 0.008
[20–25] Surfing Primary low 1 0.0049 103.39 20,242,710 0.001
[2–8] Surfing Secondary low 28 0.46 52.75 10,328,264 0.003
[8–16] Non-surfing Primary high 85 6.31 36.15 13,396,605 0.001
[20–25] Non-surfing Primary low 16 0.17 56.12 20,242,710 0.001

Notes: Rrel, relative risk; Ntrue, true number of attacks; RR, relative Risk; Nexp, expected
number of attacks; Popest, estimated beach going population; and p, p-value of log likelihood
ratio test.
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Figure 4. Space–time analysis of low and high primary and secondary surf attack clusters
between 1994 and 2009.

Table 4. Time spatial data for the high- and low-risk cluster areas in Florida between 1994
and 2009 for surfing and non-surfing.

Area Activity Rrel Ntrue RR Nexp Period p

[9–16] Surfing Primary high 118 11.08 18.96 2000–2008 0.001
[20–25] Surfing Primary low 1 0.013 0.018 1994–2001 0.001
[8–15] Non-surfing Primary high 51 4.80 16.47 2000–2007 0.001
[21–25] Non-surfing Primary low 1 0.036 22.55 1995–2000 0.001

Notes: Rrel, relative risk; Ntrue, true number of attacks; RR, relative risk; Nex, expected number
of attacks; Period, years during which cluster remained, p, p-value of log likelihood ratio test.
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when using attack rates instead of encounter numbers, several additional coastal
regions can be identified as showing a significantly high shark attack rate.

Activity specific attraction

The fact that there is a person in the water affects the likelihood of a shark attack
(Cliff 1991; Woolgar et al. 2001; Ritter and Levine 2004) but beyond this,
comparison of absolute numbers alone from different water activities or the
appearance of wound patterns do not permit valid analysis in the absence of further
baseline data. Since waves are not favorable to swimmers and generally non-surfers
alike, it could be assumed that low and high attack risks for surfers in Florida would

Figure 5. Space–time analysis of low and high primary and secondary non-surfing attack
clusters between 1994 and 2009.
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occur in different areas, but the surfing- and the non-surfing-related shark attacks
overlap for high- and low-risk areas. Such a result indicates that either both activities
are limited to the same beaches, which is not the case for the Florida east coast, or
that surfing is indeed a more incident-prone activity. The latter could be assumed for
Florida’s east coast, should the number of surfers and non-surfers be directly
proportional to each other, which is not a known statistic at this point. Nevertheless,
the naturally greater distance of surfers from shore, the prolonged duration of their
activities as well as the likely increase of shark density toward the open water makes
surfing a more incident-prone activity than swimming. Even if contact time is
probably enhanced, it can still only partly explain the difference between high- and
low-risk areas. Since the ratio between surfer-and non-surfer-related attacks remains
significant along the coast, although less prominent in low-risk areas. This implies
non-activity-related factors that might function as widespread triggers rather than
the potential effect of the activity itself.

Species specific impacts and likelihood of encounters

Although it is possible that shark nursery areas along the east Florida coast (Castro
1993; Aubrey and Snelson 2007; Reyier et al. 2008), inshore spawning or migration
of preferred food sources (Trent et al. 1997) or migration patterns of some shark
species (Castro 1996) contribute to the overall numbers of attacks in specific regions
of the study area, such time-limited events are not likely to be entirely responsible for
the space–time high attack rate clusters revealed in this analysis. But, even if the
periodic increase of a species attests to a higher attack rate, the likelihood is still slim
that the lack of such biological phenomena elsewhere along its coast could explain
the space–time low shark attack clusters. It is rather probable that the presence of
these clusters for the space–time analyses suggest continuous or seasonal critical
conditions along stretches of coast that increase the likelihood of shark attack
incidents. Unfortunately, and not just for Florida, species identification of attacking
sharks is poor and often based on non-expert eye witness reports, the victims’
guesses, the probability of common species in the area or previously identified species
of earlier incidents (Cliff 1991; Woolgar et al. 2001; West 2011). A better knowledge
and understanding of all species involved would greatly improve the prospects of
such an analysis.

Attack triggering factors

Identifying factors that attract sharks or keep them away from a person or an area is
paramount to the understanding of shark attacks. Although the research literature
is far away from comprehending what attracts sharks in the first place, the opposite
is even less understood, as the history of finding a functioning shark repellent reveals
(reviewed in Sisneros and Nelson 2001). This project did not aim to reveal causal
links for shark attack but to identify potential high- and low-risk clusters along the
Florida east coast. The ability to identify high- and low-risk areas for shark attack
along a very large and heavily populated coastline opens the possibility of searching
for causal links, such as environmental pollution and other anthropogenic triggers
(Adams and McMichael 1999). Large-scale changes in physical parameters, such as
water temperature, could also be examined for their potential to facilitate shark
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migration and aggregation (Heupel and Simpfendorfer 2005) or meteorological
phenomena like short-term air pressure changes, which have been known to affect
the swim patterns of sharks (Heupel et al. 2003). Being able to identify low-risk areas
may also provide an invaluable baseline from which causal factors could be
extracted.

Value of cluster analysis for analyzing shark attacks

Spatial statistics methodology has been well established in recent years (e.g., Roddick
and Spiliopoulou 1999; Kalnis et al. 2005; Chi et al. 2007; Rosswog and Ghose 2008).
The methodology has been applied in many fields (Sudakin et al. 2002; Coulston and
Riitters 2003; Amin et al. 2010). This project is the first to use it to analyze shark
attack data and to compare surfing and non-surfing attack rate data on a heavily
populated coast. The methodology does not identify specific links between
immediate risk and encounter outcomes but does permit comparisons across large
territories to reveal previously hidden correlations. The outcomes provide baseline
data and methodology to generate and test new hypotheses.
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